Existence and convergence of solutions for p-Laplacian systems with homogeneous nonlinearities on graphs

نویسندگان

چکیده

In this paper, we investigate a class of p-Laplacian systems on locally finite graph $$G=(V,E)$$ . By exploiting the method Nehari manifold and some new analytical techniques, under suitable assumptions potentials nonlinear terms, prove that system admits ground state solution $$(u_{\lambda },v_{\lambda })$$ when parameter $$\lambda $$ is sufficiently large. Furthermore, consider concentration behavior these solutions as \rightarrow \infty , show converge to corresponding limit problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of a positive solution for a p-Laplacian equation with‎ ‎singular nonlinearities

‎In this paper‎, ‎we study a class of boundary value problem‎ ‎involving the p-Laplacian oprator and singular nonlinearities‎. ‎We‎ ‎analyze the existence a critical parameter $lambda^{ast}$ such‎ ‎that the problem has least one solution for‎ ‎$lambdain(0,lambda^{ast})$ and no solution for‎ ‎$lambda>lambda^{ast}.$ We find lower bounds of critical‎ ‎parameter $lambda^{ast}$‎. ‎We use the method ...

متن کامل

Existence solutions for new p-Laplacian fractional boundary value problem with impulsive effects

Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...

متن کامل

Existence and uniqueness of solutions for p-laplacian fractional order boundary value problems

In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.

متن کامل

Existence and multiplicity of nontrivial solutions for‎ ‎$p$-Laplacian system with nonlinearities of concave-convex type and‎ ‎sign-changing weight functions

This paper is concerned with the existence of multiple positive‎ ‎solutions for a quasilinear elliptic system involving concave-convex‎ ‎nonlinearities‎ ‎and sign-changing weight functions‎. ‎With the help of the Nehari manifold and Palais-Smale condition‎, ‎we prove that the system has at least two nontrivial positive‎ ‎solutions‎, ‎when the pair of parameters $(lambda,mu)$ belongs to a c...

متن کامل

Existence of Periodic Solutions of p(t)-Laplacian Systems

In this paper, by using the least action principle in critical point theory, we obtain some existence theorems of periodic solutions for p(t)-Laplacian system  d dt (|u̇(t)|p(t)−2u̇(t)) = ∇F (t, u(t)) a.e. t ∈ [0, T ] u(0)− u(T ) = u̇(0)− u̇(T ) = 0, which generalize some existence theorems. 2010 Mathematics Subject Classification: 34C25, 35A15

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fixed Point Theory and Applications

سال: 2023

ISSN: ['1661-7746', '1661-7738']

DOI: https://doi.org/10.1007/s11784-023-01055-x